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ABSTRACT 

A functional form for directivity effects can be derived from isochrone theory, in which 

the measure of the directivity-induced amplification of an S body wave is c,the isochrone 
velocity. Ground displacement of the near-, intermediate-, and far-field terms of P and S 

waves is linear in isochrone velocity for a finite source in a whole space. We have 
developed an approximation c̃′of isochrone velocity that can easily be implemented as a 

predictor of directivity effects in empirical ground motion prediction relations. Typically, 

for a given fault surface, hypocenter, and site geometry, c̃′is a simple function of the 
hypocentral distance, the rupture distance, the crustal shear wave speed in the 

seismogenic zone, and the rupture velocity. c̃′ typically ranges in the interval 0.44, for 
rupture away from the station, to about 4, for rupture toward the station. In this version of 

the theory directivity is independent of period. Additionally, we have created another 

functional form which is c̃′modified to include the approximate radiation pattern of a 
finite fault having a given rake. This functional form can be used to model the spatial 

variations of fault-parallel and fault-normal horizontal ground motions. The strengths of 

this formulation are 1) the proposed functional form is based on theory, 2) the predictor 
is unambiguously defined for all possible site locations and source rakes, and 3) it can 

easily be implemented for well-studied important previous earthquakes. We compare 
predictions of our functional form with synthetic ground motions calculated for finite 

strike-slip and dip-slip faults in the magnitude range 6.5 - 7.5. In general our functional 

form correlates best with computed fault-normal and fault-parallel motions in the 
synthetic motions calculated for events with M6.5. Correlation degrades but is still 

useful for larger events and for the geometric average horizontal motions. We have had 
limited success applying it to geometrically complicated faults. 

3 



€

€

€

€ € €

€ € €

€ €

€

€

€

€ €

€
v. 2.5, June 30, 2004, approved by Ellsworth, this v contains acknowledgements

THEORETICAL DEVELOPMENT 

The measure of directivity in isochrone theory is c , isochrone velocity. Ground 

displacement of the near-, intermediate-, and far-field terms of P and S waves is linear in 

c , isochrone velocity, for a finite source in a wholespace (Joyner and Spudich, 1988). 

Spudich and Frazer (1984, 1987) have applied the concept of isochrone velocity to an 

Earth structure that varies with depth. An interesting early application of isochrone 

theory to ground motion prediction relations was made by Rogers and Perkins (1996). 

Isochrone velocity is defined by 

−1 
c := ∇s ta (x,xs) 

where xs  is the station location, x  is a location on the fault, ta (x,xs)  is the arrival time 

at xs  of a P or S wave radiated from the rupturing of point x , and ∇s  is the vector 

surface gradient function. In this document we use S waves exclusively. Arrival time is 

defined as the sum of the rupture time tr (x)and the S-wave travel time tS , 

ta x,xs( ) = tr x( ) + tS x,xs( ) (1) 

and we assume that the rupture propagates at uniform rupture velocity vr , so 

tr x( ) = x − xh vr , (2) 

where xh  is the hypocenter location. We explicitly assume vr < β , where β  is the shear 

wave speed in the source region. 

An example calculation is shown in Figure 1. These calculations and plots were 

made using the ISOSYN software of Spudich and Xu (2003). The fault is a vertical 

strike-slip fault 170 km long and 17 km wide, with a station located 1 km off the fault at -

30 km along strike. xc  is the point on the fault closest to station. (This example is 
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modeled on station 09 for the strike-slip event SG in the "1D rock simulations" of 

Abrahamson, 2003.) The S velocity structure is uniform except for a low S velocity in 

the top 1 km of the structure. Figure 1a shows contours of rupture time tr (x) for a 

uniformly expanding circular rupture. (Note the 10:1 vertical exaggeration.) The slip 

distribution in this simple example is uniform with a tapering zone at the fault edges. 

Figure 1b shows the S wave travel time function tS  on the fault. Figure 1c shows the 

isochrones, the contours of the arrival time function ta (x,xs) , which is the sum of the 

rupture time from Figure 1a and the S travel time from Figure 1b. The arrival time 

function shows the time that S waves from each point on the rupture arrive at the station. 

For example, the S from the hypocenter arrives at about 25.5 s after the origin time; S 

waves from the upper right corner of the fault arrive at the station about 44 s after the 

origin time, and S waves from xc  arrive about 32 s after the origin time. The colors in 

Figure 1c show the isochrone velocity at each point on the fault. The isochrone velocity 

is the spacing between two adjacent isochrones divided by their arrival time difference. 

Ground motions are proportional to isochrone velocity for the following reason. 

Consider the portion of the fault between the 26 s and 32 s contours. All the S waves 

from this section of the fault arrive at the station within a 6 s window. Now consider the 

part of the fault between the 32 and the 38 s contours. All these S waves also arrive in a 

6 s duration window. Clearly a much larger part of the fault contributes S waves during 

the 26-32 s window than during the 32-38 s window, so the ground motions are bigger 

during the 26-32 s window. This is the kinematic explanation of directivity. 
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Approximations of Isochrone Velocity 

Let xc  be the point on the fault closest to a station at xs , so that rupture distance 

rr = xc − xs . Here rr = rrup is the "rupture distance" commonly used in engineering 

practice (Abrahamson and Shedlock, 1997). Numerical simulations show that the largest 

radiated motions tend to come from the part of the fault in which rupture advances 
toward xc , i.e. the region between the hypocenter at xh  and xc . For this portion of the 

fault, a good approximation of c is c̃ (Figure 2), 

Dxc − xh = (3)
ta (xc ) − ta (xh ) ta (xc ) − ta (xh ) 

c̃ := 

where ta (xc ) and ta (xh ) are actually functions of some or all of xc , xs, and xh , but we 

suppress extraneous arguments to reduce clutter. c̃ is easily derived from parameters 
usually available to attenuation relation developers, as will be shown below. 

The distance D on the fault from xh  to xc  is 

2D = xc − xh = s + d2 = L2X 2 + W 2Y 2 (4) 

where s and d are the Somerville et al. (1997) distances, as shown in Figure 2. L and W 

are the length and width of the rectangular slip zone, and X and Y are s/L and d/W, as in 
Somerville et al. (1997). In the following we assume straight S ray paths, but equation 

(3) is valid for curving rays in any 3D velocity structure.

We can show that c̃ is a good approximation of c using our computed example in 
Figure 1c. In that case ta (xc ) − ta (xh ) = 32 - 25.5 s = 6.5 s. D, the distance between xh 
and xc  is about 87 km, so c̃ = 87 / 6.5 km/s = 13.4 km/s. Looking at the streak of green 

in Figure 1c, we can see that the actual isochrone velocity between the hypocenter and 
the closest point is about 15 km/s. Thus the simple expression in (3) for c̃ is a good 

approximation of c for the part of the rupture between the hypocenter and the closest 
point. 
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For practical use we must express c̃ in terms of quantities typically available in 

engineering practice. Now 

ta (xc ) = tr (xc ) + tS (xc ) = Dvr 
+ rr (5)β 

ta (xh ) = rh (6)β 

where rh = xs − xh  is hypocentral distance. 

 
 

 

1 
β 

D
  




∴ ta (xc ) − ta (xh ) = , and (7)+ rr − rh 
β 

vr 

 


−1 
c̃ = β 

 β 
+ D−1(rr − rh ) . (8)

 vr  

Isochrone Velocity Ratio - The Useful Expression 

Because the physical phenomenon of directivity is a function of vr β , it is sensible to 

normalize c̃ by local shear wave velocity β  (Appendix A). Thus, a better measure of 

directivity is the isochrone velocity ratio c̃ /β 

−1 
c̃′ := c̃ β =  

 β 
+ D−1(rr − rh ) , D > 0 . (9a)

 vr  

vr= 
β 
, D = 0. (9b) 

c̃′ is the term closest to cos(θ)  and cos(φ) of Somerville et al (1997). c̃′ has an angular 

behavior similar to cos(θ)  and cos(φ) because ta (xc ) − ta (xh ) is smallest when the 

station is in the forward direction and largest when the station is perpendicular to the 

hypocenter. It has the advantage of being appropriate for any geometry of 
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xc , xs, and xh , combining into one term the two terms cos(θ)  and cos(φ). A potential 

problem of c̃′ is that it can be singular when rupture velocity approaches the S-wave 
velocity. c̃′ lies in the range 

−1
vr ≤ c̃′ ≤ 


β

−1


β  vr 


which, for vr β = 0.8 is the range from 0.8 to 4. Caution may be needed when 

vr β > 0.8. When nothing is known about the rupture velocity of the earthquakes being 

studied, it is probably reasonable to assume that vr β = 0.8 (Heaton, 1990); limited 

testing of our theory with synthetic seismograms calculated for the source geometries 

specified in Abrahamson (2003) indicates that this assumption is acceptable. 

Like the X cos(θ) term of Somerville et al. (1997), the above derivation assumes 

that the earthquake source has bilateral rupture, i.e. the hypocenter is not on the edge of 
the fault. For bilateral sources with a circular rupture front, some part of the fault is 

rupturing toward every station, except those stations exactly perpendicular to the 
hypocenter. If a source is truly unilateral , i.e. the hypocenter is at the edge of a fault, 

then some stations can be in the backward direction. For stations in the backward 
direction, we derive a back-direction isochrone velocity ratio c̃b ′ , 

 

 

β 
−1 

+ 1 



c̃b ′ :=
 



≈ 0.44 for vr β = 0.8. (10)
vr 

This expression was derived for a line source rupturing directly away from the station. c̃b ′ 

is the minimum possible value of c̃′, A use of this term is given below. 
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Modification for Fault Edge Effects 

There are two reasons why c̃′ should be modified to account for fault edge 

effects. First, we note that slip in earthquakes tends to taper to zero at the edges of faults 
over some distance as  along strike and ad  along the dip direction. Clearly if xc  is on 

the edge of the fault and D < as (or ad  as appropriate), less ground motion will result. 

The widths as  along strike and ad  along dip can be taken from actual widths of zones 

of tapering slip at the edges of faults. We equate as  and ad  with half the correlation 

distances ( ax 2  and az 2 , respectively) of Mai & Beroza (2002), For rupture models

derived from strong motion and geodetic inversions they find ax ≈ 2 + Leff 3 and 

3, where Leff  and Weff are their effective fault lengths and widths. Ofaz ≈ 1+ Weff 

course, their correlation distances might be broadened by the limited spatial resolution of 
the inversions. For simplicity we choose 

(11)2as = ax = L 6 

2 =ad = az W 6 

The use of ax 2  and az 2  for as  and ad  is reasonable because ax  is the correlation 

length and the wavenumber power spectrum of slip is down by a factor of 1/e when 
wavelength is as  or ad . Here we approximate that full slip is expected at some distance 

2  from the edge of the fault where slip is by definition zero. However, as  and ad 
might need to be raised for several reasons: 1) a 1/e decay might not be enough of a 

decay; perhaps 1/e2 would be better. Second, owing to finite slip rise times, isochrones 
are actually bands of finite width on the fault, and here we approximate them as lines. 

Finite bands would smooth over a larger part of the fault surface. The correct theoretical 
values of as  and ad  are still not clear, and they might be a function of rise time (and 

thus, magnitude). However, in this report we do not modify c̃′ to account for slip 

tapering because we have not yet found a simple algorithm. In addition, the tapering of 

slip at the edges of faults would be more appropriately included in empirical regression 
relations by redefining the distance measure to omit low-slip peripheries of ruptures, 

ax 
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similar to Campbell's use of rseis rather than rrup (=rr here), if the low-slip peripheries are 

present in the fault lengths and widths of the earthquakes from which the regression 
relations are derived. 

There is a second reason why we should modify c̃′ for the hypocenter's proximity 

to the edge of the fault, and in this work we make that modification. Consider the case in 

Figure 2 where D is 1 cm. In this geometry there is only 1 cm of forward rupture 
propagation toward station 1, but c̃′ can still be high at that station because rr − rh 
decreases at the same rate as D in (9a) so that the limit is stable. In this case, the forward 

directivity pulse is confined between the S from the hypocenter and the S from the closest 

point on the fault, and these two arrival times might differ by only 10-5 s. Thus, in reality 

there is forward directivity, but it occurs only in a very brief pulse carrying very little 
moment. For that reason we have concocted an edge-modification factor m5 which uses 

the arrival time difference between the hypocentral S and the S from the closest point as 

an indicator of proximity of the hypocenter to the closest point. This edge modification 
factor is described in Appendix B. 

To include the edge modification factors, we define c *, which is c̃′ modified by 
the factor m5. The simplest modification is a straight multiplication, 

c1 * (xs ) := m5(xc , xh ) c̃′. (12) 

c * is unitless. Note that it is possible for c1 * to be zero for a hypocenter on the back-

direction edge of the fault when the station is in the backward direction, if m5 = 0. This 

can be circumvented by the use of the back-direction isochrone velocity ratio c̃b′ from 

(10). We define 

* c2(xs ) := c̃b ′ + m5 (c̃′ − cb ′ ) (13) 

10 
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c*2(xs)  is very similar to c1 *, except for having a more appropriate value for stations 

located in a position where there is almost no component of rupture toward them. 
However, a third version is also possible using back-direction isochrone velocity ratio c̃b ′ 

as a floor under m5 c̃′: 

* c3 (xs ) := max(m5 c̃′, c̃b ′ ) (14) 

Preliminary results indicate that c*3
works a bit better than c*2
because m5 is rarely very 

small for most geometries, meaning that the back-direction isochrone velocity ratio 

influences c*2(xs)  too much. 

Polarization of Ground Motion and Radiation Patterns 

A problem with c * is that it does not account for the polarization of ground 

motion or the closely related radiation pattern. We have tried to develop a simple 
approximation of the radiation pattern of a finite source. Typically, developers of ground 

motion prediction relations have available to them information on only two points on a 

finite fault, the hypocenter and the point on the fault closest to a particular station. Thus, 
we have concentrated on developing from only these two points an approximate radiation 

pattern for a finite fault. Our approximation works reasonably well, as will be shown 
below, but has limitations that might be removed through consideration of other points on 

the fault surface. 

Point Source Radiation Patterns 

We start with the radiation pattern of a point source. In Appendix A equations 

A12-A19, we have derived (relatively) simple expressions for the far-field S wave 
radiation patterns. We have made the following assumptions: 

11 
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Assumptions: 
1. The S wave leaves any point x  on the fault going straight to the station 

2. The S wave is vertically incident on the station 

This means that the free surface amplification is 2 for both components of 
the S wave, and that the S wave has no vertical component.  This latter restriction can 
be removed if necessary. We account for the radiation pattern as follows. Let u be 

distance along strike and v be distance down dip from the origin of coordinates on the 
rectangular slipped area of the fault (Figure 3), and let do  be the depth to the origin of the 

(u,v,w)  coordinate system, i.e. do  is depth to the top of the slipped zone. Let ẑ point 

upward. Then a point x  on the fault has coordinates x = (u,v,0 ). The far-field S 

radiation pattern for the u-component (fault parallel, FP) of motion at station location xs 
for slip at x  is Ru (xs,x). The fault-normal (FN, transverse) unit vector is t̂ = −(û ×−ẑ) , 

which lies in the horizontal plane, Figure 3, and the radiation pattern term for transverse 

motion is Rt (xs,x). We use the t̂ unit vector to explicitly differentiate it from the unit-

vector normal to the (possibly dipping) fault, ŵ (see Figure 4). These radiation pattern 

terms have both positive and negative lobes, so it will be necessary to use their absolute 
values in practice, as will be shown later. Note that these radiation patterns, derived in 

Appendix A, are for FP and FN motions at the station, not the usual SV and SH radiation 
patterns. 

These radiation patterns also have sharp nodes with zero amplitudes, which are 
both unrealistic and problematic when the logarithm is taken. We expect that nodes will 

be progressively blurred by scattering as the S wave propagates farther, and the amount 
of blurring probably scales with the path length measured in numbers of wavelengths. 

Also, for stations very near the fault trace, channeling of waves in a fault-zone low-

velocity-zone may blur radiation patterns. Because directivity is also a form of radiation 
pattern, the same blurring should occur to it, although some of the blurring of directivity 

might result from heterogeneous rupture behavior on the fault. 

12 
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However, to blur the radiation patterns shown in this report, we use an ad-hoc 
waterlevel ε, set to some arbitrary reasonable value, and we take the absolute value of 

the radiation pattern: 

Rp ′ (xs,x) := max (Rp(xs, x),ε), p = u or t,  0 < ε ≈ 0.2 (15) 

Because the synthetic simulations have perfect radiations patterns, we use ε = 0.01 when 
comparing with simulated data. For real data ε ≈ 0.2 might be better. Attenuation 

relation developers might need to make ε an empirically determined function of period 
(Pitarka et al., 2000). While we also expect that the radiation pattern maxima will be 

blurred and reduced by scattering (perhaps by a factor of 2?), we currently only blur the 
nodes because ln(1) − ln(0.5) is much less than ln(ε) − ln(0). 

Finite Source Radiation Patterns 

Because the source area is not actually a point, it is necessary to modify the 

radiation pattern to account for source finiteness. In this analysis we consider two points, 
xh  and xc . For very long period motions we might expect S waves from xh  and xc  to 

interfere constructively (i.e. with phase coherence), but for short periods they would not. 

In the forward directivity region coherent summation is expected, whereas in the other 

directions the arrival times from the hypocenter and closest point will be well separated, 
leading to phase incoherence. Stations in the forward directivity region will probably see 

similar radiation patterns from the two points, whereas most other points will not. Thus, 
in general incoherent summation will prevail, and when it does not, in the forward 

direction, the radiation patterns (as seen at the station) will be similar. Coherent 

summation would be Rp(xs,xh ) + Rp(xs,xc ). 

In this report we approximate the finite fault radiation pattern by the average of 
the radiation patterns of the hypocenter and the closest point: 

13 
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1 1R p(xs,xc ,xh ) := + R p ′ (xs,xc ), p = t or u. (16)R p ′ (xs,xh )2 2 
Even though distance to the hypocenter rh  can be much greater than rupture 

distance rr , we choose not to downweight Rp(xs,xh )  too much because the radiation at 

the station will be dominated by the region between the hypocenter and closest point; in 

fact, since a station within the slipped zone of the fault, like station 2 in Figure 2, is 
normal to the closest point, such a station is on a node of Rt (xs,xc ) (transverse motion), 

which is clearly inappropriate for stations close to a fault. This is a drawback of our need 

to use only information about the hypocenter and closest point. For such a station the 
fault-normal (transverse) motion is provided by the radiation pattern from the hypocenter. 

An advantage of our averaging formulation is that most stations will have no nodes. 

When comparing to observed geometric mean horizontal data it is necessary to 

use the geometric average radiation pattern, which in this report is defined as 

R uR t . 

There are a number of problems involved in using the geometric average of highly 

polarized pulses, which will be discussed later. 

R ga := 

Recommended Predictor Variables 

We define a “source anisotropy factor” to be any combination of radiation 

patterns and directivity. A source anisotropy factor has the form 

A p := (some form of c̃′ )(some form of Rp) 
where p is the component of ground motion (u or t), and some form of blurring of 

radiation pattern nodes is employed. In all cases, the predictor variable is Ap. 
For use in empirical regression relations, we want to have predictors and a 

functional form for directivity, polarization, and radiation pattern that are capable of 
capturing their dependence on magnitude, distance, and period. Typically, ground 

motions y could be fit by a form like 

14 
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ln(y) = f (M,rr ,T) + k2(M,rr ,T)ln(A
p) (17) 

where f (M,rr ,T) is the non-directive part of the model and k2(M,rr ,T) is an empirically 

determined coefficient that may vary with magnitude M, distance rr , and period T. We 

will show several possible definitions of Ap. Although it might be possible to develop 
functional forms for which the dependence on T is not needed, it is not done here. 

Possible predictor variables are: 

A1
p := m5 c̃′R p, p = u or t (18) 

This is very simple, but has the disadvantage that m5 can be very close to zero. A 

preferable remedy is to put a floor under m5 c̃′ by using c*3
: 

*A2
p := max(m5 c̃′, c̃b ′ ) R p = c3R p, p = u or t, (19) 

where ˜′cb  = 0.4444 for vr β = 0.8. This covers the unusual but possible case that m5 is 

very small. 

In the above we have concentrated on using only isochrone velocity to 
characterize the effect of a finite source, but equation A3 shows that the length of the line 

integral ∫ dl also is a finite source effect contributing to the ground motion. 
x(t,x s) 

Comparisons (shown later) indicate that the effect of the line integral might be simulated


by including D in the predictor variables:


A3
p := D c̃′R p, p = u or t , (20)


or


A4
p := D m5 ˜′c R p, p = u or t (21) 

or the preferred 

A5
p := D max m5 ˜′c , ˜′cb( ) R p = D c3 

*R p, p = u or t. (22) 

15 
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p pOf the batch listed above, we recommend ln(A2 ) and ln(A5 ) . However, note that it is 

possible for D to equal zero, so in practice some sort of floor should be put under D. We 

have not yet derived a theoretically justified value of this floor. 

Handling Multiple-Segment Faults 

The above formulation of isochrone directivity based on c̃′ does not generalize 

easily to handle multiple fault segments. We have developed a formulation for sources 
consisting of multiple fault planes (Figure 5), in which we effectively flatten the fault. 

The proposed approach is similar to the generalization of the Somerville et al. (1997) 

directivity parameters to multiplanar faults proposed by J. Boatwright (personal 
communication). Our formulation is simple but it can introduce spatial discontinuities 

into the source anisotropy factors as a function of station position. 

c̃′ for a Single Segment 
On the i-th planar segment let xci  be the point closest to the station. On all 

segments draw a horizontal line at the same downdip coordinate vh  as the hypocenter 

(see Figure 5). Define the pseudo-hypocenter xih of the i-th planar segment to be the 

point on the horizontal line closest to the true hypocenter xh . For one of the segments 

(nominally taken as segment H) the pseudo-hypocenter will coincide with the true 

ihypocenter. Define the rupture distance of the i-th segment to be rr = xic − xs  and the 

ihypocentral distance of the i-th segment to be rh = xih − xs . Of course, rr = min(rr
i )

i 

i iand xc = min(xc ). Define Di = xic − xh . Then the approximate isochrone velocity ratio
i 

of the i-th segment is 
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−1 β 
+ Di 

−1(rri − rh
i ) , Di > 0 . (23a)c̃i ′ :=  

 vr  

= 
v
β 
r , Di = 0. (23b) 

This is the same form as equation (9) for a single segment fault. Similarly, we can let m5 
i 

be m5 for the i-th segment. (If the segment containing the true hypocenter is segment H, 

then only m5 
H  is different from unity.) The average radiation pattern of the i-th segment 

i iis defined to be R i
p = R p(xs, xc ,xh ), p = desired direction. Note, however, that for 

multi-segment faults FN and FP are not unique, and the average radiation patterns may 

need to be rotated into some desired direction. In Appendix A the expression A13 is 
valid for any horizontal polarization direction p̂ , but subsequent expressions are 

specialized to p̂ being t̂ , fault-normal, or û , fault-parallel, for a single segment. In the 

following we will define û i  and t̂i  to be fault-parallel and fault-normal directions, 

respectively, for the i-th segment. 

Flattening the Fault 

Consider a fault consisting of N planar segments, as in Figure 5, where we assume 

that the i = H  segment contains the true hypocenter, the L-th segment is the closest to the 

station, and segments H+1 through L-1 are between segments H and L in space. The 
multi-segment generalization of D is 

 



 

2N 
∑ 

 





*D :=
 + dL 
2 (24)si 

i=1 

Lengths si  are shown in Figure 5 and defined as follows: If point x on the fault has 
icoordinates (u, v, 0), as in Figure 3, then si = uc

i − uh . Then an overall approximate 

isochrone velocity ratio for the multi-segment fault can be defined as 
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−1 β −1 * * c̃′ =  + (D ) (rr − rh ) , D > 0 . (25a)
 vr  

vr * = 
β 
, D = 0. (25b) 

For simple geometries like that in Figure 5a the above algorithm for selecting 

pseudohypocenters xih and closest points xci  approximates the likely path of rupture 

fairly well. However, for fault networks that have many long cross-cutting faults or 

several parallel fault strands, the line segments connecting xih 
* and xci  can lead to a D

that is much longer than the actual length of rupture, and consequently c̃′ calculated 
using (25a) can exceed 4.0. If so, we replace that c̃′ with the following: 

−1 
c̃′ =  

 β 
+ D−1(rr − rh ) , D > 0 (25c)

 vr  

where D = xc − xh  is the straight-line distance from the hypocenter to the closest point. 

To develop the multi-segment source anisotropy terms we must include radiation 
patterns. In this formulation we will ignore the fact that the segments are not parallel to 

each other, i.e. û H ≠ û L  and t̂ H ≠ t̂ L . We define "effective" fault-parallel and fault-

normal radiation patterns 

1 1R FP (xs,xc ,x h ) := Rû ′ H (xs,xh ) + 
2 
R ̂ ′ L (xs,xc ) (26a)u2 

1 1R FN (xs,xc , xh ) := Rˆ ′ ( ) (26b)Rˆ ′ ( ) + 
2 tL xs,xc2 t H xs,x h 

H  and xc ≡ xc . Here we are not bothering to rotate thewhere we recall that xh ≡ xh L 

radiation pattern terms into a common orientation. For fault segments whose strikes 

differ by less than 30° this approximation is probably not too bad. 

Using this formulation for multiple segment faults, we define a preferred source 
anisotropy factor analogous to single segment equation (19): 

A2
p := max(m5 

L c̃′, c̃b ′ ) R p, p = FN or FP, (27) 
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where in practice m5 
L  will have the value unity except when L=H (recall, L is not the 

number of segments, but rather the index of the segment containing the closest point to 

the station), c̃′ is from (25), R p  is from (26), and c̃b′ is from (10). The second preferred 

source anisotropy factor, analogous to single segment equation (22) is 

A5
p := D* max(m5 

L c̃′, c̃b ′ ) R p, p = FN or FP. (28) 

This formulation of source anisotropy factors for multi-segment faults (equations 27 and 
28) has the advantage that it is quite simple. It has two disadvantages. First, the exact 

fault-normal and fault-parallel directions are not defined. Second, these source 
*anisotropy factors can be spatially discontinuous. As the station is moved, D  and the 

average radiation pattern can change discontinuously as the closest point xc  jumps from 

one segment to another. 

Our expression (25) for c̃′ gives an intuitively satisfying result, but our expression 

(26b) for the fault-normal component of radiation pattern R FN  is not so satisfying. 

Figure 6 shows these terms calculated for a multisegment approximation of the fault 
rupture of the 1992 Landers, California, earthquake. c̃′ is peaked along the curving fault 

trace, as desired. There are some discontinuities in c̃′ caused by the closest point moving 

across a segment boundary, but these discontinuities are not very strong. On the other 

hand, the map of ln(R FN ) is not so satisfying. It shows strong fault-normal motion is 

expected off the ends of the fault, but not along the fault trace itself. This is caused by 

the breakdown of the approximation of the finite fault radiation pattern by a sum of the 

radiation patterns from the hypocenter and the closest point (equation 26). For a planar 
fault the hypocentral radiation pattern provides the fault-normal motion along the fault 

trace (which is the pink wedge along X = 0, Y > 0, in Figure 6. However, the curving 
fault bends away from this radiation pattern lobe and the radiation pattern term from the 

closest point does not provide the needed fault-normal motion. Consequently, a better 

approximation of the finite-fault radiation pattern is needed. 
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COMPARISONS WITH 1D SIMULATIONS 

To determine whether the proposed predictor variables might possibly be useful, 

we compared the predictions to synthetic ground motions calculated for a variety of 
earthquake source models and station distributions in a vertically varying ("1D") geologic 

structure. These problem geometries were defined by Abrahamson (2003). We 

calculated these synthetic motions using a hybrid broadband simulation procedure that 
combines a stochastic approach at high frequencies with a deterministic approach at low 

frequencies (Graves and Pitarka, 2004). A kinematic description of fault rupture is used, 
incorporating spatial heterogeneity in slip, rupture velocity and rise time by discretizing 

an extended finite-fault into a number of smaller subfaults. The stochastic approach sums 

the response for each subfault assuming a random phase, an omega-squared source 
spectrum and generic Green's functions (Boore, 1983). Gross impedance effects are 

incorporated using quarter wavelength theory (Boore and Joyner, 1997). The 
deterministic approach sums the response for many point sources distributed across each 

subfault, with theoretical Green's functions calculated using a 1D frequency-wavenumber 

integration algorithm. 
In this report we consider four different rupture models or events, SA (the only 

strike slip event), and reverse events RB, RG, and RK (Table 1). For each event (source 
geometry) 24 simulations of ground motions were calculated for all stations. The 24 

simulations consisted of 12 different hypocenter locations equally spaced in the northern 

half of the fault and two types of slip distributions, shallow and deep. Each combination 
of event and realization was given a code, e.g. RG24 for the 24th realization of event 

(source geometry) RG. 
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Table 1. Rupture Dimensions for Source Models in 1D Simulations 

Event 
Name 

Mag 

Area (km2) W (km) L (km) Dip 

Top of 
Rupture 

(km) 
SA 6.5 325 13 25 90 0 
RB 6.5 324 18 18 45 0 
RG 7.0 1008 28 36 45 0 
RK 7.5 3164 28 113 45 0 

We used as "data" yi  either the simulated fault-normal (FN) or fault-parallel (FP) 

response spectral accelerations at 3 s period and 5% damping, or the geometric average 

of the FN and FP spectral accelerations . For each event the data from all realizations 
were lumped together and were fitted with a simple non-directive model: 

ln(yi ) = C1(T) + C2(T) ln(rri + C3(T)) + ρi 

where yi  was either the FN, FP, or geometric mean of the FN and FP spectral 

acceleration at period T = 3 s at station i, and rri  is the closest distance (rupture distance) 

to the fault from station i. Unknown coefficients C1 and C2 vary from realization to 
realization; C3 is common to all realizations, and ρi  is the residual between data and 

fitted non-directive model. A separate non-directive model was developed for each 

component of motion (FN, FP, and GA). Data at all distances were used, but in the 
following plots only residuals for rri < 100 km are shown. 

We anticipate that directivity effects will be handled in ground motion prediction 
relations as a correction to the non-directive part of the relationship, in a manner similar 
to X cos(θ) of Somerville et al. (1997). Therefore, we first fit the synthetic ground 
motion to the above simple model and then we examine the residuals ρi  for directivity 

effects. 

Rather than quantify the effects, our goal here is to demonstrate that the candidate 
predictors discussed above have the capability to explain a significant part of the scatter 
in the residuals ρi . We anticipate a linear relationship in the logarithmic scale because 

isochrone theory predicts that the ground motion amplitude should be a linear function of 
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isochrone velocity or the length of the isochrones or their product. If such a linear 

relationship is observed in our limited simulated data set, there is some hope that the 
correlation will persist when applied to a broader data set of real data containing a wider 

range of sources. It might be argued that a nonlinear relationship would be acceptable, 
but such a relationship would not be predicted by theory and could not be expected to 

persist when applied to a data set different from the synthetic data used here. In fact, in 

the course of this work we have seen examples of nonlinear relationships with the 
logarithms of candidate predictor variables at small and large magnitudes, but the 

nonlinear functions that worked for the small magnitude events were quite different from 
those that worked for large events. 

Now we show preliminary results for two of the candidate predictor variables 
listed above, namely 

pln(A1 ) = ln(m5 c̃′R p ), p = u(FP) or t(FN) or GA 

and 
pln(A3 ) = ln(D c̃′R p ), p = u(FP) or t(FN) or GA. 

For the former predictor an early now-disfavored version of the m5  algorithm was used, 

in which it was not required that the closest point be on the edge of the fault for non-unity 
m5. This old version of the m5  algorithm only differs from the new one at stations that 

are nearly perpendicular from the hypocenter. The latter predictor is interesting because 

it includes the factor D. Neither of these predictor variables is currently favored because 
they put no floor under D or m5, but they illustrate the basic aspects of the comparisons. 

When calculating the predictor variables, a water level ε = 0.01 was used because the 

synthetics have perfect radiation pattern nodes. 
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Event SA Analysis 

Figure 7 shows maps of the geometric average, fault normal, and fault parallel 
residuals ρi  for SA02, strike-slip event SA, M 6.5, hypocenter realization 02. This fault 

extends from Y=12.5 to Y = -12.5 km. As the hypocenter in this (and all other ) 
realization is in the "north" (+Y end of the fault), the directivity is apparent in the 

generally large positive residuals (with respect to a non-directive model) in the "south" (-

Y) end of the fault. 

This example points out possible problems in the use of the geometric average 

motion when the ground motions are strongly polarized by directivity and radiation 
patterns. The effect of radiation pattern can be seen in Figure 8, which is Figure 7 with 

probable ground motion polarization directions superposed in green. The big FN pulse is 
shown by FN residuals along strike in the south end of the fault (X=0, Y=120) being 

large and positive whereas the FP residuals are large and negative at that point. A similar 

effect is seen at X=80, Y=0, where a large FP motion is observed. In both of these 
locations one component of motion is quite small, dragging down the geometric average 

(Figure 9). However, at X=60, Y=60 the motion is dominated by SV (radial) motion, so 
the geometric average is not depressed so much. This is an example of the geometric 

average motion being affected by the choice of coordinate system. Figure 10 shows a 

similar pattern for a different hypocenter location in event SA. 

Figure 11 shows the correlation of the residuals for geometric average motion 

compared with two different predictor variables, A1
p and A3

p (using the early m5 

algorithm). The correlations are shown as scatter plots using residuals for all realizations 
of event SA, and the two predictor variables and the residuals are shown as maps for two 

specific realizations, SA02 and SA04. The general agreement of the maps indicates that 
the isochrone directivity factors capture much of the directivity in the simulations, 

although there is considerable scatter and nonlinearity in the scatter plots of residuals 

(upper panel). 
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Figure 12 shows that the FN and FP residuals show a stronger correlation with the 

predictors than do the GM residuals. Also, the FN residuals show a smaller scatter than 
the GM. This is another indication that reliance on the geometric average motion of 

highly polarized pulses can be problematic. Generally the FN and FP residuals are fairly 
linearly related to the both predictors, but the upper right panel shows that for FP motion 

the A1
p predictor tends to overpredict FP motion. This tends to happen close to the fault, 

where the synthetic motion is smaller than the prediction. This discrepancy might be 

related to an inappropriate value for the radiation pattern. 

Reverse Fault Analyses - Events RB, RG, and RK 

Figures 13 through 18 show the same general patterns for events RB (M6.5), RG ( 

M 7.0), and RK (M 7.5). The spatial maps of the geometric average residuals resemble 
the maps of the predictors, and the residuals correlate with the predictors better for FN 

and FP components of motion than for the geometric average component of motion. In 
general, the predictors work better for the smaller events than for the larger events. This 

is probably because the approximation of the finite source radiation pattern by two points 

sources is more accurate for the smaller events. For a very large event the hypocenter 
can be 100 km from the station, whereas the closest point on the fault can be only a few 

km distant, so an equal weighting of the two might not be very appropriate. A better 
solution might be to use the radiation pattern of the point between the hypocenter and the 

closest point that radiates the strongest motion at the station. 

CONCLUSIONS 

We have suggested 5 different predictor variables, with the recommended predictor 

variables being A2
p and A5

p. 

Developers of ground motion prediction relations will probably need to make radiation 
pattern water level ε an empirically determined function of period. Certainly following 
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us and using ε = 0.01 with real data will be wrong. We cannot determine the proper 

number from the synthetic data. 

= 0.8 isDevelopers might want to experiment (cautiously) with the ratio vr β , but vr β 

probably acceptable. 

Our directivity measures currently do not compensate for the fact that slip tapers toward 
the edges of all fault. This suggests that a new distance measure is needed, similar to 

Campbell's seismogenic distance, which excludes the low-slip-amplitude peripheries of 

faults. 

The use of geometric mean motions for polarized pulses can be problematic. The main 
problem is that the geometric mean is strongly controlled by the smaller component, and 

the amplitude of motion on the smaller component is controlled by random factors in the 

Earth that are not present in any models. Thus, the geometric average can have a large 
component of uncertainty. 

APPENDIX A. EQUATIONS FOR THE RADIATION PATTERN 

The following discussion uses the basic notation and geometry of Spudich and 
Frazer (1984), the erratum Spudich and Frazer (1987), and Spudich and Xu (2003). 
Please see those paper for the definitions of terms not defined here. In the following we 
use SF to mean Spudich and Frazer (1984) and we use SFnn to refer to equation nn from 
SF. 

The simplest form of isochrone theory assumes that the space- and time-
dependence of the earthquake slip time-function d(x,t) can be separated, 

d(x,t) = s(x) f [t − tr (x)]. (A1) 

Here bold characters denote vectors, x  is a point on the fault, s(x)  is the amplitude of the 
slip as a function of position on the fault, and the slip time function f [t − tr (x)] is 
normalized to unit final amplitude, i.e. f (∞) = 1. The time behavior f (t) is the same 
everywhere on the fault – in other words in this simple model the rise time of slip is 
constant everywhere on the fault, but the initiation time (or rupture time) tr (x) and the 
slip amplitude s(x)  vary over the fault surface. This is a simple but not unrealistic model 
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for a slip time function in a real earthquake (e.g. Heaton, 1990). The time derivative of 
f (t) is ḟ  (t). 

Using (A1) the displacement in the direction of an arbitrarily oriented unit vector 
p̂ at the station xs , given by SF10, can be written with the slip time-function factored 
out, 

w w wp̂ ⋅ u (x s, t) = up (xs,t) = ḟ  (t) ∗ Ip (xs,t) , (A2) 

where w = P for P waves and S for S waves and where 

wIw (xs,t) := s∫ (x) ⋅ G p (x,xs)c(x,xs)dl , (A3)p

x (t ,x s)


with the path of integration x(t,xs) being the isochrone for time t (defined in SF9). 
Henceforth for simplicity we will write these path integrals without the isochrone 
specifically listed. Isochrones for a specific example are shown in Figure 1d. The color 
field in that figure shows the real part of the integrand of (A3). 

Although equation (A3) is the basic isochrone integral, Spudich and Xu (2003) 
have rearranged terms so that the dependence on the direction (polarization) of ground
motion p̂ is factored out of the integrand to the greatest extent possible. Let û and v̂ be 
unit vectors lying in the fault plane, with û being horizontal and being directed along 
strike and with v̂ pointing downdip. Define unit vector ŵ = û × v̂ as the normal to the 
fault, which is different from the typical engineering use of the term 'fault normal' (Figure 
3). The slip vector is s = suû + sv v̂ . Also shown in Figure 3 are the t̂ unit vector, which 
is perpendicular to the fault in the horizontal plane, (typically called 'fault-normal' or 
'strike-normal' in engineering; we also call this direction 'transverse' here), and the ẑ unit 
vector, pointing vertically upward. Typically we will evaluate all the expressions for 
components of motion p̂ = û, t̂, or ẑ , as these tend to be the dominant polarization 
directions of near-fault motions. 

Then, from equation (18) in Spudich and Xu (2003) we have that the S wave 
ground motion us in the p̂ direction at the station xs  is 

s µ Q s∫ sp̂ ⋅ u = ḟ  (t) ∗ ⋅ [Fp(p̂ ⋅ b̂ 0)X1 + Fc (p̂ ⋅ ĉ 0)X2] c dl . (A4) 

Here the SH free surface coefficient is Fc  and the complex SV free surface coefficient is 
FSwhere p = u, t, or z is the component of motion. Vectors r̂ , b̂ , and ĉ are thep 
directions of particle motions for P, SV and SH waves, respectively, shown in Figure 4. 
Note that at the station xs  the P wave is polarized in direction r̂o , the SV wave is 
polarized in the b̂ 0 direction, and the SH wave is polarized in direction ĉ 0. X1 contains 
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most of the radiation pattern for SV and X2  contains most of the radiation pattern for SH. 
They are given by SF as 

X1 = (n̂ ⋅ r̂)b̂ + (n̂ ⋅ b̂ )r̂ 
(A5) 

and 

X2 = (n̂ ⋅ r̂ )ĉ + (n̂ ⋅ ĉ)r̂ . 
(A6) 

1The geometric spreading factor S = [ dA /dΩ ] 2 and the ratio of impedences at the two 
ends of the S ray are contained in the term 

Q := [4π S(xs ,x)]− 1[ρ0ρβ 0β 5]− 1 2 

where the subscript "0" denotes a material property at xs  and lack of a subscript denotes 
a property at the fault. 

Approximations for Engineering Use 

• A1: no laterally heterogeneous structure. 
• A2: r̂ , b̂ , and ĉ calculated assuming straight rays (Figure 4) 
• A3: r̂o , b̂ o , and ĉo  calculated assuming the ray is vertical at the station, i.e. 

ˆr̂o = −ẑ, b̂ o = η̂ o, and ĉo = ψo.  This means that ẑ ⋅ b̂ o = ẑ ⋅ ĉo = 0, i.e. the S wave 
shas no vertical component.  This also implies that Fp = Fc = 2 , the free surface 

coefficient is the SH component for both horizontal components of motion. 

With these approximations the p-component of S-wave displacement is 

sp̂ ⋅ u = ḟ  (t) ∗ 2µ Q s∫ ⋅ [(p̂ ⋅ b̂ 0)X1 + (p̂ ⋅ ĉ 0)X2] c dl 

= ḟ  (t) ∗ 2µ QΓ∫ p c dl (A7) 

where Γp = s ⋅ [(p̂ ⋅ b̂ 0)X1 + (p̂ ⋅ ĉ 0)X2] (A8) 

Isochrone velocity ratio 

Isochrone velocity is given in units of speed, and it seems appropriate to normalize by the 
local shear wave velocity because the Ben-Menahem directivity factor is a function of the 
ratio of the rupture velocity to the local shear wave velocity. For that reason, we define 
an isochrone velocity ratio to be the ratio of isochrone velocity and shear wave velocity, 
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c′ := c β (A9) 

Using this, the p-component of S-wave displacement becomes 

sp̂ ⋅ u = ḟ  (t) ∗ ∫ 2µ Q′ s ⋅ [(p̂ ⋅ b̂ 0)X1 + (p̂ ⋅ ĉ 0)X2] c′ dl (A10) 

where Q′ := [4π S(xs ,x)]− 1[ρ0ρβ 0β 3]− 12. (A11) 

Radiation pattern definition 

Define radiation pattern for the p-component of motion: 

Rp = ŝ ⋅ [(p̂ ⋅ b̂ 0)X1 + (p̂ ⋅ ĉ 0)X2] (A12) 

where ŝ is a unit vector in the direction of slip, which implies that Γp = sRp . 

To evaluate the radiation pattern, we need to define the fault geometry and coordinate 
system. Let u, v, and w be coordinates in the fault plane, following unit vectors 

w, with x = (u,v,w). 
Then the hypocenter is at xh = (uh ,vh,wh )  and the station is at xs = (us,vs,ws) . Let the 
point in the slipped rectangle closest to xs  be xc = (uc ,vc ,0 ). Then the S wave radiation 
pattern for the p-component of motion can be written 

û, v̂, and ˆ 

ˆ ˆ ˆRp(xs,x) = (p̂ ⋅ b0)[(n̂ ⋅ r̂ )(ŝ ⋅ b) + (n̂ ⋅ b)(ŝ ⋅ r̂)] + (p̂ ⋅ ĉ 0)[(n̂ ⋅ r̂)(ŝ ⋅ ĉ) + (n̂ ⋅ ĉ)(ŝ ⋅ r̂)] 
(A13) 

This is the most useful expression for the radiation pattern. All the dot products in this 
daunting term can easily be evaluated using geometric information typically available, as 
given in the following equations. In the following we use the notation 
sδ and cδ to mean sin(δ) and cos(δ) , respectively. We will evaluate the radiation pattern 
for the strike-parallel ( û )and the strike-normal ( t̂ ) components of S-wave motion. Note 
that dip δ  and rake λare given parameters, so terms like 
sδ and cδ (sin(δ) and cos(δ)) and sλ and cλ (sin(λ) and cos(λ)) are directly evaluated. 
Angles ψ  and η f  are shown in Figure 4, and must be calculated using the simple 
algebraic expressions below. 

p̂ = û ⇒ (û ⋅ b̂ 0) = −cψ, (û ⋅ ĉ 0) = sψ (A14) 
p̂ = t̂ ⇒ (t̂ ⋅ b̂ 0) = −sψ, (t̂ ⋅ ĉ 0) = −cψ 
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(n̂ ⋅ r̂) = sη f sψ sδ + cη f cδ


(n̂ ⋅ b̂ ) = cη f sψ sδ − sη f cδ (A15)

(n̂ ⋅ ĉ) =cψ sδ


(ŝ ⋅ r̂ ) = −cλ sη f cψ+ sλcδ sη f sψ− sλ sδcη f

(ŝ ⋅ b̂ ) = −cλcη f cψ+ sλcδcη f sψ+ sλ sδ sη f (A16)

(ŝ ⋅ ĉ) =cλ sψ+ sλcδcψ


where 

sη f = R /r; cη f = −z′ /r; sψ = t′ /R; cψ = u′ /R (A17) 

and where r = xs − x  is straight-line distance from xs  to x, and R is cylindrical radius 
from xs to x. 

All the above terms in the radiation pattern can be evaluated for two special source points 
on the fault, namely x = xh , the hypocenter, and x = xc , the closest point to the station. 

For Rp(xs,xh )  where, the hypocenter xh = (uh ,vh,0 ) (A18) 
= rh , hypocentral distance 

2d− h

2rh


• r 

• R = Rh = , epicentral distance 
• dh= depth of the hypocenter from the free surface 
• u′ = us − uh 
• z′ = zh = −dh , z-coordinate (elevation) of the hypocenter 

−ws  do  
• t′ = − + vh cδ . 

sδ  sδ  
do  = depth to top of slipped zone 

and 

.For Rp(xs,xc )  where xc = (uc ,vc ,wc ) , the closest point, (A19) 
• r = rr  rupture distance 

 do  
• z′ = zc = − + vc sδ , z-coordinate (elevation) of the closest point

 sδ  

• R = Rc = rr 
2 − z ′2 , horizontal distance from station to closest point 

• u′ = us − uc 
−ws  do  

• t′ = − + vc cδ  , and 
sδ  sδ  

• do  = distance to the top of the slipped zone. 
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A Possible Simplification 

If forced to simplify the radiation patterns, we would set η f = 90 o, which 

corresponds to rays travelling horizontally leaving the source. Owing to the increase of S 
velocity with depth, this approximation will usually not be too bad, but we have not made 
many calculations to verify the general accuracy of this approximation. 

APPENDIX B, ISOCHRONE VELOCITY MODIFICATION FACTORS 

We introduce a modification factor m5  to account for the situation when the 
station is off the end of the fault (e.g. station1 in Figure 2), and D is very small. 

We use the arrival time difference 
D

δta = ta (xc ) − ta (xh ) = (B1)
c̃′β 

to test whether the hypocenter and the closest point are near each other at the edge of the 

fault. We compare this arrival time difference to Δta
q, the arrival time difference if the 

hypocenter were at the center of the fault. 

Algorithm 
IF xc  is NOT on the edge of the fault, then m5 = 1 

 


 

22L 
2 

 
 W 

2




ELSE Q
= is the distance on the fault from its center to xc , κ  =uc − vc −











+



 


 

2 ( an adjustable parameter, meant to be approximately Q /aq , where aq  is comparable to 

the width of the slip tapering zone in km (equation 11). 

Q 
− 1  . 


 


β
 δtaΔ ta
q 

 
, and m5 := min 1, (B2)



= 

Δta
qκβ
 vr 

Based on equation 11, κ  should be 3, but we suspect κ  = 2 is a better number given the 
finite width of isochrones. 
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FIGURE CAPTIONS 

Figure 1. Isochrone theory example for a vertical strike-slip fault 170 km long and 17 km 
wide, with a station located 1 km off the fault at -30 km along strike. Star is 
hypocenter location. Red triangle is the point on the fault closest to the station. a) 
Contours are circular rupture front positions at 5 s intervals. Color fill is slip 
amplitude, which is 1.0 m over most of the fault and tapers to zero at the edges. 
b) Contours are S wave travel time from each point on the fault to the station. 
Color fill is slip amplitude. c) Contours are arrival time function (sum of rupture 
time plus S wave travel time). Contours are isochrones, paths of integration in 
(A3). Colors are isochrone velocity. At every point on the fault the isochrone 
velocity is proportional to the spacing between the local isochrones. d) Contours 
are arrival time function (isochrones, paths of integration). Colors are the real 
part of the integrand of equation (A3) for transverse (FN) motion. Ground 
displacement at time t is proportional to the integral of the integrand along the 
isochrone for time t. Boundary between blue and red is the node of the radiation 
pattern for transverse motion. Integrand is large near xc  because station is very 
close to fault there. 

Figure 2. Schematic illustration of approximate isochrone velocity c̃ for two stations, 
triangles labeled 1 and 2. xc1  and xc2  are closest points on fault to stations 1 and 

2, respectively. Note that xc1  is on the edge of the fault but xc2  is within the 

fault. Star is hypocenter. D is distance on the fault from the hypocenter to the 
closest point. 
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Figure 3. Relation of fault coordinate system to geographic coordinate system. Let u be 
distance along strike and v be distance down dip from the origin of coordinates O 
on the rectangular slipped area (pink) of the fault, and let do  be the depth to the 
origin of the (u,v,w)  coordinate system, i.e. do  is depth to the top of the slipped 
zone. Let ẑ point upward. Then a point x  on the fault has coordinates 
x = (u,v,0 ). The fault perpendicular (transverse) unit vector in the horizontal 

plane is t̂ = −(û ×−ẑ) . Fault-parallel motion is directed along the û direction and 
fault-normal motion is directed along the t̂ direction. 

Figure 4. Geometry for calculating radiation patterns and ray geometry. 

Figure 5. Illustration of 3-segment rupture. xh  is the event hypocenter. xh 3  are2  and xh 
pseudo-hypocenters placed on segments 2 and 3 at the same depth as xh . 

Horizontal line segments s1, s2, s3 and downdip segment d3 are analogous to 
1segments s and d in Figure 2. xc , xc 2 , and xc 3 are the points on each segment 

closest to the station (pink triangle) at . xs . rr  is the distance to the closest point 
on any fault segment. 

Figure 6. Maps of approximate isochrone velocity ratio (left side) and fault-normal 
average radiation patterns (right side) around a multisegment approximation 
(black line) of the rupture of the 1992 Landers, California, earthquake. Epicenter 
is at (0,0). Spatial discontinuities in plotted quantities are caused by the closest 
point jumping from segment to segment. 

Figure 7. Map of residuals for M6.5 strike slip event SA with hypocenter 02 (turquoise 
dot). Residuals are defined as ln(synthetic data) minus ln(best fitting non-directive 
model). 25 km long fault lies along the X=0 axis, symmetrically disposed about 
Y=0. Positive Y is nominal “north.” Three maps show residuals for geometric 
average, fault-normal ( t̂ ) and fault-parallel ( û ) components of motion. Red 
shows synthetic data greater than fitted non-directive model; blue shows the 
opposite. 

Figure 8. Same as 7, with green bars in various locations on the geometric-average map 
indicating probable polarization of S waves. At some locations the S wave 
polarization is parallel to the fault-oriented coordinate system (X,Y) and at other 
locations the S wave polarization is rotated 45° from the fault coordinate system. 

Figure 9. Same as 7, but with area of FN polarization circled. The small FP motions drag 
down the geometric average in the circled region. This is problematic because in 
real data the amplitude of the FP motion in the circled region is controlled by 
unmodelable factors. 
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Figure 10. Map of residuals for M6.5 strike slip event SA with hypocenter 04 (turquoise 
dot). Because SA is a short fault, the residual map is nearly identical to that for 
SA02 (Figure 7). See Figure 7 caption for details. 

Figure 11. Summary plot of residuals for M6.5 strike-slip event SA compared to two 
p ppredictor variables, ln(A1 ) = ln(m5 c̃′R ga )  and ln(A3 ) = ln(D c̃′R ga ) . 

Upper scatter plots show geometric average residuals from all 24 realizations 
compared with geometric average predictor variables. Blue lines are best-fitting 
straight lines, and red lines are local regression curves. Lower two rows show 
maps of geometric average residuals and predictors for realizations (hypocenters) 
02 (upper row) and 04 (lower row). Maps are rotated so that nominal north (+Y) 
is to the right. Residual maps (far right column) are from Figures 7 and 10. Other 
two columns show maps of the two predictor variables for each hypocenter 
location (turquoise dot). 

Figure 12. Demonstration that FN (middle column) and FP (right column) residuals for 
M6.5 strike-slip event SA are better predicted individually by predictor variables 
than is the geometric average (left column). Residuals are from all 24 realizations 
of M6.5 strike-slip event SA. Blue lines are best-fitting straight lines, and red 
lines are smooth curves passed though the data in an optimal way. Upper row is 

p ppredictor ln(A1 ) ; lower row is predictor ln(A3 ) . 

Figure 13. Summary plot of residuals for M6.5 reverse event RB compared to two 
p ppredictor variables, ln(A1 ) = ln(m5 c̃′R ga )  and ln(A3 ) = ln(D c̃′R ga ) . 

Upper scatter plots show geometric average residuals from all 24 realizations 
compared with geometric average predictor variables. Blue lines are best-fitting 
straight lines, and red lines are local regression curves. Lower two rows show 
maps of geometric average residuals and predictors for realizations (hypocenters) 
02 (upper row) and 04 (lower row). Maps are rotated so that nominal north (+Y) 
is to the right. Hypocenter shown by turquoise dot; vertical projection of fault 
surface shown by barely visible black rectangle. Residual maps (far right 
column) are from Figures 7 and 10. Other two columns show maps of the two 
predictor variables for each hypocenter location. 

Figure 14. Demonstration that FN (middle column) and FP (right column) residuals for 
M6.5 reverse event RB are better predicted individually by predictor variables 
than is the geometric average (left column). Residuals are from all 24 realizations 
of the event. Blue lines are best-fitting straight lines, and red lines are smooth 

pcurves passed though the data in an optimal way. Upper row is predictor ln(A1 ) ; 
plower row is predictor ln(A3 ) . 

Figure 15. Summary plot of residuals for M7.0 reverse event RG compared to two 
p ppredictor variables, ln(A1 ) = ln(m5 c̃′R ga )  and ln(A3 ) = ln(D c̃′R ga ) . 

Upper scatter plots show geometric average residuals from all 24 realizations 
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compared with geometric average predictor variables. Blue lines are best-fitting 
straight lines, and red lines are local regression curves. Lower two rows show 
maps of geometric average residuals for realizations (hypocenters) 02 (upper row) 
and 04 (lower row). Maps of predictors not available at time of writing. Maps are 
rotated so that nominal north (+Y) is to the right. Hypocenter shown by turquoise 
dot; vertical projection of fault surface shown by barely visible balck rectangle. 
Residual maps (far right column) are from Figures 7 and 10. 

Figure 16. Demonstration that FN (middle column) and FP (right column) residuals for 
M7.0 reverse event RG are better predicted individually by predictor variables 
than is the geometric average (left column). Residuals are from all 24 realizations 
of the event. Blue lines are best-fitting straight lines, and red lines are smooth 

pcurves passed though the data in an optimal way. Upper row is predictor ln(A1 ) ; 
plower row is predictor ln(A3 ) . 

Figure 17. Summary plot of residuals for M7.5 reverse event RK compared to two 
p ppredictor variables, ln(A1 ) = ln(m5 c̃′R ga )  and ln(A3 ) = ln(D c̃′R ga ) . 

Upper scatter plots show geometric average residuals from all 24 realizations 
compared with geometric average predictor variables. Blue lines are best-fitting 
straight lines, and red lines are local regression curves. Lower two rows show 
maps of geometric average residuals and predictors for realizations (hypocenters) 
02 (upper row) and 04 (lower row). Maps are rotated so that nominal north (+Y) 
is to the right. Hypocenter shown by turquoise dot; vertical projection of fault 
surface shown by barely visible balck rectangle. Residual maps (far right 
column) are from Figures 7 and 10. Other two columns show maps of the two 
predictor variables for each hypocenter location. 

Figure 18. Demonstration that FN (middle column) and FP (right column) residuals for 
M7.5 reverse event RK are better predicted individually by predictor variables 
than is the geometric average (left column). Residuals are from all 24 realizations 
of the event. Blue lines are best-fitting straight lines, and red lines are local 

p pregression curves. Upper row is predictor ln(A1 ) ; lower row is predictor ln(A3 ) . 
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